A Graph Theoretic Approach to Software
Watermarking

Ramarathnam Venkatesan!, Vijay Vazirani?, and Saurabh Sinha3

! Microsoft Research
venkie@microsoft.com
2 Georgia Tech
vazirani@cs.gatech.edu
3 University of Washington
saurabh@cs.washington.edu

Abstract. We present a graph theoretic approach for watermarking
software in a robust fashion. While watermarking software that are small
in size (e.g. a few kilobytes) may be infeasible through this approach,
it seems to be a viable scheme for large applications. Our approach
works with control/data flow graphs and uses abstractions, approximate
k-partitions, and a random walk method to embed the watermark, with
the goal of minimizing and controlling the additions to be made for
embedding, while keeping the estimated effort to undo the watermark
(WM) as high as possible. The watermarks are so embedded that small
changes to the software or flow graph are unlikely to disable detection by
a probabilistic algorithm that has a secret. This is done by using some
relatively robust graph properties and error correcting codes.

Under some natural assumptions about the code added to embed the
WM, locating the WM by an attacker is related to some graph approxi-
mation problems. Since little theoretical foundation exists for hardness of
typical instances of graph approximation problems, we present heuristics
to generate such hard instances and, in a limited case, present a heuristic
analysis of how hard it is to separate the WM in an information theoretic
model. We describe some related experimental work. The approach and
methods described here also suitable for solving the problem of software
tamper resistance.

1 DMotivation

The problem of software watermarking at a very basic level is to insert some
data W (the watermark) into a program P so that in the resulting program P’
it is not easy to detect and remove the watermark. To motivate our approach,
we look at some toy examples of watermarking schemes and possible attacks
against each.

Scheme I: Let Wy, be a small piece of W, and let cr(W) be an encryption
of Wj,. Suppose we insert Wy, in the form of an instruction like move RegisterX,
cr(Wy,) just before another instruction that writes RegisterX. We could insert all
pieces Wy of W in this manner, distributed at different places in the program.

I. S. Moskowitz (Ed.): IH 2001, LNCS 2137, pp. 157-168, 2001.
© Springer-Verlag Berlin Heidelberg 2001

158 Ramarathnam Venkatesan et al.

However, a simple algorithm that does register flow analysis would discover that
the instructions we inserted are dead code, and remove them altogether. Clearly,
this scheme of inserting W is not safe from automated attacks. Even if W has
been somehow encoded in the form of a dummy function W (z) which is called
at various places in the program, unless the values returned by W (x) affect the
program variables, a data flow analysis program would detect the redundancy
of W(x) and remove it.

Scheme 2: Now actual program variables are in some way affected by W (z).
Suppose at some point in P, variables x and z are live, and suppose z is used in
instruction I(z). Replace I(z) with the sequence of instructions:

y = W(x)
t := Encrypt(z,y)/ * useyasakey * /
z := Decrypt(t,y)

1(z)

Now, W (x) can be seen to be redundant upon careful visual inspection, but
it might be difficult for automated tools to discover this redundancy. Clearly, one
can think of many other ways of linking W tightly with the program P. However,
the link between P and W is still weak in the following sense: considering P as
a graph, and W as a graph, the function call between P and W is a single-edge
cut between the two subgraphs, and an algorithm that looks for such single-edge
cuts between regions of the graph P’ would be able to flag W as a possible
candidate for removal.

In fact, there are graph algorithms that can efficiently separate regions of
a graph that are weakly connected, where a weak connection may mean that
there is a small cut. Moreover, such a graph based attack on the watermark is
effective against any scheme that inserts W in the code/data section, without
ensuring that the subgraph W is not wesoftware akly connected to the rest of
the graph. In other words, any method that attempts to place a WM in the
code/data section must contend with attacks that use such automated tools
to create a short list of suspected WM locations, which can be isolated with
smaller amount of semantic information or human intervention. We propose
an algorithm for inserting or embedding a watermark graph W into a program
graph P such that the adversary is not at any advantage with automated tools of
the type mentioned above, and is thus forced into excessive visual inspection and
semantic inference. Note that an attacker can use the semantics by observing
the execution and input-output behaviour and effectively re-write the program,
removing any WM.

An attractive feature of the solution is that it provides a tool for Software
Tamper Resistance. The goal here is to make an executable resist changes to
the code (e.g. to remove a license check) without excessive tracing and use of
semantics. We do not address the detail here; briefly our method describes the
construction of the graph that how different code fragments (each of which corre-
spond to a node v; of the graph) cross check the other fragments (corresponding
to the nodes v; that are adjacent to a given v;). For robustness, a good solution

A Graph Theoretic Approach to Software Watermarking 159

must address both WM and tamper resistance together, which other approaches
do not seem to attempt. We mention the general principles but addressing the
specific criteria and actual generation of the inserted code is beyond the scope
of this paper; in practice, this is a significant amount of work that is quite im-
portant. While making the modifications to the original code, it is important to
preserve the performance, and we note that the usual profiling and optimizing
approaches work with the graph of the watermarked program as well.

1.1 Difficulties in Designing a WM

Hiding and recovering the watermark The task of inserting a WM in such a way
that it cannot be recovered efficiently calls for some sort of a one-way function
on executables, or on their flow graphs. But unlike in cryptography, there are no
known ways of defining one-way functions on these domains and there are basic
difficulties in accomplishing this in a rigorous or plausible way. For instance, to
design and reason about one-way functions, one must specify the distribution of
instances, which in cryptography, one can and usually takes to be uniform. But in
our case, the graphs are already generated by some specific development process,
and they cannot be modified substantially without degradation of performance.
An additional difficulty is that the attack algorithms need only be approximate,
in a sense that will become clear later, for which little theory exists to reason
about typical instances. Therefore, the flexibility for generating hard instances
for the watermark removal problem is rather constrained.

Our constructions are graph theoretically motivated and can be seen as
a heuristic to hide a WM in a way that would require identifying a specific cut (or
a close approximation to it) among an exponential number of cuts with the same
or nearly same graph theoretic parameters. To achieve this, we pseudo-randomly
extract a random-looking graph from the orignal flow graphs, using a k-partition
algorithm. In spririt, this is similar to Szemeredi’s regularity lemma, which em-
beds random looking structures [Diestel] in an arbitrary but large enough dense
graph. The implicit constants for the lemma are truly astronomical and it is
known that no improvement is possible, although weaker versions of regularity
are often sufficient [F'K]. Ours may be thought of as a poor man’s version of
these. Empirically, it appears plausible that such an extraction can be done on
relatively large programs.

It is unlikely that we can successfully watermark a small executable without
significantly increasing its size artificially. Another problem to contend with is
recovery of the WM from an attacked version of the program. We view this
problem as designing a “graph hashing” function that uses a secret key and
returns the same value on a graph even if it is subject to small alterations.
Formally, this problem can use natural metrics such as edit distance bewtween
graphs through addition and deletion of nodes and edges.

Local Indistinguishability The added code (or data) W should not be distin-
guishable from the original payload code P by looking at local properties. For
example, there may be more than usual randomized data in a segment, and this

160 Ramarathnam Venkatesan et al.

can be detected by using tools, such as that developed by Adi Shamir and Nico
van Somerin. Alternately, unusual access patterns may be found and exploited
in shortlisting suspected watermark locations. Moreover, addition of the WM
may also cause local properties to be noticably different.

1.2 Some Available Tools

First we would like to point out the existence of tools that take a program binary
as input, construct the corresponding control flow graph at the basic block level,
and provide an interface that allows transformations to be made to this graph.
Some are even available as disassemblers with well defined interfaces. Such tools,
hereafter referred to as graph analyzers, give the adversary the ability to observe
and make modifications to a program without changing its functionality, and
can be used successfully for reverse engineering. For example, the Machine-SUIF
CFG library [Holl] provides a Control Flow Graph interface to programs, where
nodes are lists of instructions. Similarly, OPTIMIX [A] is a tool that allows
tranformations and optimizations in a program through a graph rewrite speci-
fication. Examples of poweful disassemblers are [So] and Ursoft’s W32Dasm. A
very powerful tool called Vulcan [Vulcan] serves as a disassembler and provides
a flexible interface to the static flow graph. To restate what has been described
above, any watermarking scheme of the future has to be robust to automated
or semi-manual attacks that extensively use graph analyzers. Secondly, the al-
gorithms for partition, separator, and cut problems of various flavours seem to
work quite well in practice for the typical inputs that occur here. Finally, we
focus on WM for any executable in this paper; knowledge of the domain and
typical operations as well as the implementation details can be used to harness
the WM and can be used in conjunction with this work.

2 Previous Work

A comprehensive survey and taxonomy appears in [CT]. Static schemes embed
watermarks in the code section (code watermarks), or in the data section (data
watermarks). While the latter may be relatively easy to recover and remove,
code watermarks are more robust and may be encoded in the order of indepen-
dent instructions, in register use patterns [BCS], or control flow layout (e.g.,
order of C-style case statements or basic block sequence in the program flow
graph [Davidson]. But these methods may be prone to distortive attacks by a
graph analyzer, which shuffle the crucial order or pattern while maintaining the
functionality of the program.

Dynamic schemes store the watermark in the program’s excution state, for
example using data structures with some invariant properties to encode a WM.
(One needs to ensure that the WM is insensitive to small distortions to these str-
cutures.) See [C'T] for a brief descriptions, some weaknesses and possible attacks.
Also see [AP].

A Graph Theoretic Approach to Software Watermarking 161

3 Goals and Assumptions

Below, the term program refers to the usual notion of a computer program run-
ning on a RAM mcahine. It includes programs in high-level languages such as C,
and executable binaries, i.e., programs that are a sequence of machine-specific
instructions. Also, two programs P and P’ are said to be functionally equiva-
lent if their output is the same for any user-input and the user-interface or the
performance does not have any discernible difference; we allow minor differences
such as in the exact instructions and their order in two programs.

3.1 Software Watermarking

A watermarking algorithm E takes as input a program P, a watermark object W,
and a secret key w, and outputs a program P’ (i.e., E(P,W,w) = P’) such that
P’ is functionally equivalent to and not much larger than P, and there exists an
efficient algorithm e that can retrieve W from P’ given a key K, i.e., e(P', K) =
W. e is called an extractor for the watermark. The key K = f(P,W, P’,w) for
some f (e.g., K = w could be a key).

Let A denote an adversary that modifies the program P’ to produce A(P’).
(We shall see shortly what we mean by an adversary, and in what ways it may
modify a program.) A watermarking algorithm is said to be secure against A if
3 an efficient extractor e such that

— e(A(P"),K) =W if 3P, W, w such that P’ = E(P,W,w) and
K = f(P,W, P, w)
— e(A(P"), K) = NULL otherwise.

In other words, the extractor must detect the presence or absence of water-
marks in face of possible adversarial modifications, and furthermore, extract W
if present.

3.2 The Adversary

Now we consider relevant adversarial models. An adversary modifies P’ to pro-
duce a functionally equivalent program. Based on the extent to which the mod-
ification is done, we have removing adversaries and jamming adversaries. A re-
moving adversary A, is such that A,(P’) = P”, where P” in an information
theoretic sense has no information about W. For example, it could be a human
agent who is assisted by a powerful tool and examines the entire program P’, in-
struction by instruction, infers the semantics, and writes an equivalent P”. Such
an adversary can “undo” any watermark, and our goal is to ensure that this the
only possible model of an effective adversary. (By “undoing” a watermark, we
mean rendering it impossible to detect by any efficient extractor.) The jamming
adversary A; modifies the program P’ so that it is difficult for the extractor e
to extract the watermark, even with the secret key K. This is a more practical
model of adversary - it has more limited capabilities than the removing adver-
sary. It cannot remove the watermark, but renders it hard to detect. We focus on

162 Ramarathnam Venkatesan et al.

security against this type of adversary in the rest of the paper. By a probabilistic
adversary we shall mean one that could succeed in undoing the watermark with
a high probability. The adversary may also be approzimate, i.e., it could undo
a significant portion of the watermark.

4 Basic Principles

As noted earlier, we refer to programs by their flow graphs, where nodes cor-
respond to basic blocks in the program and edges correspond to control flow
(jumps and “fall through”s) and function calls. Let the flow graphs of P, W
and P’ be G,W and H respectively. We may abstract the process of watermark-
ing as G+ W — H. It merges G and W by adding edges. These edges form a cut
that is discussed in much detail below. Addition of edges corresponds to auto-
mated ways of inserting code, data and control flow into the programs. Let G
be the subgraph of H induced by the nodes of G. Similarly, let W be the sub-
graph induced by the nodes of W. We claim two necessary conditions for a good
watermarking scheme in this framework:

1. Wy must be locally indistinguishable from G .
2. Wg must be well connected to Gy in H.

Condition (1) is explained in Section 1.1, while condition (2) is explained in
the next section.

4.1 Hiding a Cut

In the above framework, we define the e-separation problem as: Given H, par-
tition its nodes into G' and W' such that at least 1 — € fraction of nodes of W
are in W' and at least 1 — € fraction of the nodes of G are in G'. The original
G, W are not given. Intuitively, the separation problem is to find the “right”
cut, within a small margin of error. This “right” cut reveals W approximately,
therefore E(P, W, w) must hide the cut so that it is hard to recover. Our heuristic
may be viewed as a steganographic hiding of a cut of size m in H such that it
is hard to find, even approximately, from an information theoretic standpoint.
We emphasize that this is only a pre-requisite for a secure watermark, since an
easily detected cut exposes the watermark to a graph-based attack.

Literature is rich with separation algorithms that find cuts meeting various
criteria: See [['T] for nearly equal partitioning of planar graphs with a low cut
ratio, [GSV99] for approximating optimal separator cuts in planar graphs, [ST96,
GM] for spectral methods and [LR88, LLR95] for multi-commodity flow based
methods. Heuristic algorithms such as Metis [I[{K] are effective at partitioning
in practice and this makes the task of hiding the cut non-trivial. We hide a cut
of size m in such a way that there are many cuts of size m’ for each integer
m’ € [m — A, m+ A], for some suitably chosen A > 0. Thus even if there is an
algorithm to find cuts of size m’ € [m — A, m + A], the “right” cut is hidden in
an information theoretic sense.

A Graph Theoretic Approach to Software Watermarking 163

It is now clear what we mean by the requirement that Wy must be well
connected to Gy in H. (A sparse cut is easy to detect.)

5 Embedding the Watermark

In this section, we describe how to construct H such that the separation problem
is likely to be hard on H. We shall make certain assumptions about G and W
and defer the experimental justification of those assumptions till Section 6.

5.1 Watermarking Algorithm
Given: Program P, watermarking code W, secret keys w; and we, integers m, n.

1. Graph step: Compute flow graph G from P. As mentioned earlier, the flow
graph has the basic blocks of P as nodes, and edges correspond to either
control flow or to function calls. Similarly, compute flow graph for W. G
and W are both digraphs.

2. Clustering step: Partition the graph G into n clusters using w; as random
seed, so that edges straddling across clusters are minimized (approximately).
Let G. be the graph where each node corresponds to a cluster in G and
there is an edge between two nodes if the corresponding clusters in G have
an edge going across them. This step produces an undirected graph G. of
smaller order. Similarly, W yields W, also of order n.

3. Regularity step: Here we add edges to and between G. and W, using a random
walk: Assume we are at a node v € Ge. Let dyy and dy,, be the current

. . . d
number of nojes adjacent to v in G. and W, respectively. Let pgq = ﬁ
and pgy = %. We visit next a random node in G¢ with probability pg.,

or a node in W, with probability pgq. The choices are made using wo. If u is
the node chosen to visit, an edge is added from v to u. We work similarly if
v € W, to begin with. We repeat this till m edges have been added across G.
and W.,. Let H be the resultant graph. Output the program P’ corresponding
to H. (An edge in H may be implemented in P’ as an “opaque” call or control
flow from one block to another.)

Recovery of the watermark must not only find the true cut, it must also deal
with distortions made by the adversary, and we discuss this step in Section 5.3

5.2 Discussion

The clustering step (2) must have a way to find different clusterings for different
values of wj, so that the adversary does not have any knowledge about the
clustering used.

The undirected graphs G, and W, obtained from Step 2 in the algorithm
are found, empirically, to be very similar in structure to the random graph
model G, ,, [B] with n nodes and edge probability p. (See Section 6.) We now

164 Ramarathnam Venkatesan et al.

examine the effect of the regularity step (3). The basic goal of this step is to
add m edges across G, and W,, sampling without replacement. The random
walk heuristic roughly achieves this, and the motivation for it is to yield a better
merged graph in terms of local indistinguishability for real world input graphs
that are not truly random. (When this is not a concern, one may add edges
randomly). The analysis is simplified by assuming henceforth that each of the n?
possible edges is present in the cut independently with probability m/n?. It is
more realistic to assume that the graphs are as generated by the random walk
procedure or sparse, but we shall not do this here. Also, we shall drop the
subscript ‘¢’ from G, and W,, so G and W are now the subgraphs of H, each of
size n, with m edges straddling across.

Call an equi-partition {G’, W'} of H an m-partition if the cut size
|E(G',W')| = m. Call an equi-partition {G’, W'} good (for the adversary) if
(W' nW|/[W| > 1—e. We now claim that the ratio of the expected number
of good m-partitions to the expected number of all m-partitions (in H) is ex-
ponentially small in n, for appropriately chosen value of m. This suggests that
the m~cut between G and W is hidden in an information theoretic sense. The
claim can be written as follows:

Let G and W be two random graphs following the G/, ;, model, each of size n.
Let edges be added at random between them such that each edge is added with
probability p. Let H be the resulting graph. Let m = n?p and let X be the
random variable counting the number of good m-partitions of H, and let Y be the
random variable for total number of m-partitions. Then, % is exponentially
small in n.

We now outline our analysis. A partition will always mean an equi-partition.
Let X’ be the number of good partitions. Note that X’ is a fixed constant.
Clearly, X < X', and therefore, % < %{,) (since E(Y) > 0). Consider an
arbitrary equi-partition of the nodes of H into G’ and W’. Let |G’ — G| = z.
Therefore, |W’ — W| = x. X’ is the number of such partitions with = < en.

Clearly, X' =" (2)2 < (en—i—l)(;)2 (for e < 1) < 2en2?nH(e) = ep22nH()+1)

where H(\) = —Mog\ — (1 —\)log(1 — A) is the binary entropy function and the
last inequality uses,

2nH()\) n 2nH()\)
—— (> < (1)
8mnA(l — A) An 2nA(1 = A)
Let I(A,B,m) be an indicator variable indicating that (A,B) is an m-
partition. Then, Y =3 ¢ ¢ > grcw g/=s) L(G—SUS W =5"US,m) =3"Y;

(here, we denote the ¥ term in the summation by Y;). By linearity of ex-
pectation, we have E(Y) = S E(Y;) = Y Pr(Y; = 1) = 3" (")’ pa(m),

where p,.(m) is the probability that (G —SUS', W — S§"US) is an m—mpartition,
for |S| = |S’| = x. Note that this probability depends only on z, and not on the
particular choice of (.9, S").

Let Z, be the random variable that counts the number of edges in an equi-

partition (A, B) with |G N B| = |W N A] = z. Since both G and W follow

A Graph Theoretic Approach to Software Watermarking 165

the G, , random graph model, and since each of the n? possible edges across
them is present with probability p, we have H being a graph with 2n nodes
and each edge present with probability p, independently of others. So, for any
equi-partition (A, B), the cut size has a binomial distribution. Therefore, Z,,
follows the binomial distribution. Letting (N, p, k) denote the probability that
a binomial variable with parameters N, p assumes a value k, we have p,(m) =
Pr(Z, = m] = b(n? p,m) = b(n? p,n’*p) = 2((n’*p(1 — p))~/?). Since p is
a constant, we get

n n\ 2 n n\ 2
TQ‘herefore, EY) = YY" (1) ps(m) = 2" (1)) = 2(2) =
Q(Zl—") (using Inequality 1). And we finally have the desired result,

X/ 6n22nH(e)-‘,—1

E(Y) - 22n/n1.5

Note that we need to assume that the adversary knows m, since he can try
each possible value. Also, we cannot expect the above claim to be true for all
values of m. For example, if m is in the neighborhood of 0 or n?, then good
empirical attacks that find very small or very large cuts will do the job. But
for values of m close to n?p the analysis above indicates that the information
theoretic hiding will succeed.

5.3 Recovery of Watermark

To recover the watermark, the extractor first needs to identify (most of) the
nodes of W. To this end, one may store one or more bits at a node that flags
when a node is in W by using some padded data after suitable keyed encryption
and encoding. Recall that each node in the program flow graph is a sequence of
instructions, which allows room to embed the flagging information. By applying
a majority logic over a node and its neighborhoods, we can increase the resistance
to tampering.

The extractor, having detected the nodes of W, then samples several small
subsets w from W, using the secret key as the random seed. The sampling is
done with probability proportional to the number of edges in the subset, so
that relatively dense subsets are obtained. Then, a robust function is computed
on each w, producing the watermark. Since the adversary cannot distinguish
the nodes of W from G to any significant extent, we may assume that the
distortive changes made by it to the program are at random places, and very few
in number. Thus we need graph properties that are resistant to minor changes,
and one could use all of them simultaneously. Construction of such “Graph hash”
functions is an interesting problem by itself and our future research will address
this problem in more detail. For now we present some elementary methods. If A
is the adjacency matrix of w, k < d/2 where d is its diameter, one expects

166 Ramarathnam Venkatesan et al.

then A* to be robust to a small percentage of changes in the graph and it is
observed to be so empirically. Using the adjacency matrix requires knowing a
robust ordering (labelling) of the vertices, and we may use vertex invariants to
solve the problem. A vertex invariant is a property of a vertex that does not
change under an automorphism. The degree is such a property. k-neighborhood
size is another. The idea is to compute labels of vertices using such invariants, and
then computing the adjacency matrix powers. This is combined with a suitable
error correcting code that filters out the small changes in a string extracted
from adjacency matrix powers. Also we may use functions based on cuts and path
lengths. While detecting the watermark, one may wish to use some local strategy
that does not need using the whole graph. This is indeed possible when there
are few changes. Finally, as we have stated earlier, this watermarking algorithm
may be used in conjunction with any other scheme that exploits semantic or
other specific knowledge about the programs.

6 Experiments

We begin with simple experimental results that examine the randomness assump-
tions made about the graphs extracted in the clustering step. Let n = number
of nodes in G, and m = number of edges. We test the hypothesis that G, is
from the probability space Gy, ;,, with p = A%, for several G.. Fix some c. We

2
pick at random many hyperedges of size ¢ and count the number of them that
are present and compare with the expected values. Additionally one takes many
cuts and verifies that their values are as expected. The experimental steps are:

1. Obtain G, corresponding to a large application binary (several Megabytes
in size).

2. Pick k vertices of G, at random and let the subgraph of G, induced by V be
called a hyperedge. Since each actual edge in this hyperedge is hypothesized
to be present with probability p, the number of actual edges in the hyperedge
should follow a binomial distribution b((g) ,p). Randomly pick N hyperedges
as described above, independently, and count the number of hyperedges that
have c actual edges, for small values of c. Let the number of hyperedges with ¢
actual edges be denoted by N., and let the corresponding random variable,
which counts the hyperedges with ¢ actual edges in a random graph G, ,

be X.. If K = (g), we have Pr[number of edges in a hyperedge is ¢] =

(Ic{)pc(l —p)E=¢ = p. (say), and hence E(X.) = Np.. Thus this step gives
us one sample (N,) for a random variable that under the hypothsis has an
expectation of E(X.) = Np..

3. Repeat Step 1 a large number of times, say T times, to get T samples of the
random variable X.. Compute the observed mean N, and compare it with
the expectation E(X.).

We performed the above steps for N = 10000, 7" = 1000, ¢ = {0,1,2} and
k ={3,4,5,6}. The following tables summarize the results:

A Graph Theoretic Approach to Software Watermarking 167

c=0 c=1 c=72
k|Observed [Expected|Observed |Expected|Observed |Expected
319838 9836.4 |158 162.7 2 0.9
419682 9675.5 |306 320.1 10 4.4
519480 9465.0 |491 521.8 25 12.9
69238 9208.4 |706 761.5 49 29.4

We can similary apply other randomness tests. These as well as actual em-
pirical runs of various separation algorithms to locate a hidden cut can serve as
a check that we are not introducing simple weaknesses.

Now we briefly address robust functions on graphs. A be the adjacency matrix
of W, and let dw be its diameter. We test the small powers of adjacency matrix
yield unique signatures of the graph, but are affected only in a few places when
the graph is changed in small number of places. We used A = 5000 x 5000 matrix,
diameter d = 8 and A%? was found to have about 4% of its entries changed.

7 Acknowledgements

We thank Mariusz Jakubowski(MS Research) and Jayram Thatacher (IBM Re-
search) for their invaluable help early in this project.

References

[AP] Ross J. Anderson and Fabien A. P. Petitcolas. On the limits of Steganog-
raphy. IEEE J-SAC, 16(4), May 1998. 160, 167

[A] U. Assmann. OPTIMIX optimizer generator. http://iddwww.info.uni-
karlsruhe.de/ assmann/optimix.html 160

[BCS] Council for IBM Corporation Software birthmarks. Talk to BCS Tech-
nology of Software Protection Special Interest Interest Group. Reported
in [AP]. 160

[B] Bella Bollobas. 1985. Random Graphs. Academic Press. 163

[CT] C. Collberg and C. Thomborson. Software Watermarking: Models and
Dynamic Embeddings. Principles of Programming Languages 1999,
POPL’99. 160

[Davidson] R. L. Davidson and N. Myhrvold Method and system for generating and
auditing a signature for a computer program. US Patent 5559884, Septem-
ber 1996. Assignee: Microsoft Corporation 160

[Diestel] Reinhard Diestel. 2000. Graph Theory Springer-Verlag, second edition.

159

[Feller] William Feller. 1993. An Introduction To Probability Theory And Its
Applications, volume 1. Wiley Easter Limited, third edition.

[FK] A. Frieze and R. Kannan. The Regularity lemma and approximation

schemes for dense problems. 37th Annual Symposium on Foundations of
Computer Science, 2-11, October 1996. IEEE. 159

[GM] S. Guattery and G. L. Miller. On the Performance of Spectral Graph
Partitioning Methods. Sixzth Annual ACM-SIAM Symposium on Discrete
Algorithms, 233-242, ACM-STAM, 1995. 162

168
[GSV99)]
[Holl]
[JK]

[KK]

[LLRY5)

[LR8S)

[LT]

[So]

[ST96]

[Vulcan]

Ramarathnam Venkatesan et al.

N. Garg, H. Saran and V. V. Vazirani. Finding Separator Cuts in Planar
Graphs within Twice the Optimal. SIAM J. Computing, vol 29, No. 1,
159-179 (1999). 162

G. Holloway. The Data Flow Analysis Library of Machine SUIF.
http://www.eecs.harvard.edu/hube/software/v130/dfa.html 160
Norman L. Johnson and Samuel Kotz. Discrete Distributions. Wiley Series
in Probability and Statistics, 1999.

G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning.
DAC 1999, 343-348. 162

N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15:215-245, 1995.
162

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to approxima-
tion algorithms. In Proc. 29th Ann. IEEE Symp. on Foundations of Com-
put. Sci., pages 422-431, 1988. 162

R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs.
SIAM J. Appl. Math., 36 (1979), 177-189. 162

V Communications. Sourcer: Advanced Commenting Disassembler.
http://www.v-com.com/products/sourcer.html. 160

D. A. Spielman and S. Teng. Spectral Partitioning works: Planar graphs
and finite element meshes. Technical Report CSD-96-989, U. C. Berkley,
February 1996. extended abstract in Proc. 37. IEEE Conf. Foundations
of Comp. Sci., 1996. 162

Amitabha Srivastava Vulcan Tech Report Technical Report Vol TR99, No
76, Microsoft Research Technical Reports, 1999. 160

	A Graph Theoretic Approach to Software Watermarking
	Motivation
	Difficulties in Designing a WM
	Some Available Tools

	Previous Work
	Goals and Assumptions
	Software Watermarking
	The Adversary

	Basic Principles
	Hiding a Cut

	Embedding the Watermark
	Watermarking Algorithm
	Discussion
	Recovery of Watermark

	Experiments
	Acknowledgements

